

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Big Data Analytics	

Staff	Core academic unit(s)
Coordinator: Dr Dmitrij Celov	Department of Econometric Analysis
Other(s):	Faculty of Mathematics and Informatics

Study cycle	Type of the course unit
First (Bachelor's)	Optional

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	Semester 5	English

Requisites					
Prerequisites: Statistical Theory, Econometric Theory and Practice	Co-requisites (if relevant):				

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	130	36	94

Purpose of the course unit							
The purpose of the course is to acquaint students with the principles of analysis of big data, and to enable them to apply high-dimensional models, using tools from statistical, machine learning and econometrics to solve practical problems.							
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods					
 understand the problems related to prediction and inference when dealing with big data and/or high-dimensional models 	Lectures and individual work	Written exam (70%) Labs (20%) Practicals (10%)					
2. know and apply methods of supervised	Lectures, labs with R, practical						

2.	know and apply methods of supervised learning	Lectures, labs with R, practical training, and individual work.
3.	know and apply methods of unsupervised learning	
4.	understand the specificity of approximations in high dimensions	
5.	evaluate the empirical adequacy of models	

		Cor	ntact /	Indiv	vidual	work	: time	and a	assignments
Content		Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. Introduction to high-dimensional methods, big data and big p inference	4				1	1	6	14	[V], [KMO], [ISLR] Ch. 12, [ESL] Ch. 1-2,
2. Supervised learning: cross-validation and penalized estimation, regression trees and random forests, bagging and boosting	4				1	1	6	14	[ISLR] Ch. 3, 5,7,8.2 [ESL] Ch. 3, 5, 7, 8.7, 10
3. Classification and support vector machines	4				1	1	6	14	[ISLR] Ch. 4, 9 [ESL] Ch. 4, 12
Midterm exam									
4. Unsupervised learning: density estimation, principal components and factor models, clustering, topic models	4				1	1	6	24	[ISLR] Ch. 10 [ESL] Ch. 14
5. Asymptotic approximations in high dimensions	4				1	1	6	14	[CGHST], [CHSa],
6. Inference in high-dimensional models	4				1	1	6	14	[CHSb]
Final exam									
Total	24				6	6	36	94	

Assessment strategy	Weight (%)	Deadline	Assessment criteria
Practical training	10	Regular	A correct solution of 2 equally valued tasks is required to get the maximum.
Labs	20	End of term	4 equally valuated tasks correctly implemented/solved are required to get the maximum.
Midterm examination	35	Mid-term	10 short questions and a solution of 2 exercises.

Final examination	35	End of term	4 points out of 10 from the final exam is required to pass the course. Given this condition holds, the final mark is obtained as a weighted average from the two components.
-------------------	----	-------------	---

Author (-s)	Publishing	Title	Issue no. or	Publishing house or web link
	year		volume	
Required reading				
[ISLR] James, G., D. Witten, T. Hastie, and R. Tibshirani	2014	An Introduction to Statistical Learning with Applications in R		Springer: http://wwwbcf.usc.edu/~gareth/IS L/index.html
[ESL] Hastie, T., R. Tibshirani, and J. Friedman	2009	The Elements of Statistical Learning: Data Mining, Inference, and Prediction		Springer
[CGHST] Chernozhukov, V., M. Gentzkow, C. Hansen, J. Shapiro, M. Taddy	2013	Econometrics of High- Dimensional Sparse Models		NBER Lectures and Video Materials: http://www.nber.org/e conometrics_minicour se_2013/
[CHSa] Chernozhukov, V., C. Hansen, and M. Spindler	2015	Post-Selection and Post- Regularization Inference in Linear Models with Many Controls and Instruments	105	American Economic Review
[CHSb] Chernozhukov, V., C. Hansen, and M. Spindler	2015	Valid Post-Selection and Post- Regularization Inference: An Elementary, General Approach	forthcom.	Annual Review of Economics
[HK] Hansen, C. and D. Kozbur	2014	Instrumental Variables Estimation with Many Weak Instruments Using Regularized JIVE	182	Journal Econometrics
[KMO] Kleinberg, J., J. Ludwig, S. Mullainathan, and Z. Obermeyer	2015	Prediction Policy Problems	105	American Economic Review: Papers and Proceedings
[V] Varian, Hal R.	2014	Big data: New tricks for econometrics	28	Journal of Economic Perspectives