

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Computing and Data Analysis	

Academic staff	Core academic unit(s)			
Coordinator: Nora Marija Laurinaitytė Other(s):	Faculty of Economics and Business Administration			

Study cycle	Type of the course unit				
1 st cycle (full-time studies)	Compulsory				

Mode of delivery	Semester or period when it is delivered	Language of instruction		
Face-to-face	Semester 4	English		

Requisites					
Prerequisites: Statistical Theory (First year)	Co-requisites (if relevant):				

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Self-study hours
5	130	36	94

Purpose of the course unit The aim of the module – to develop undergraduate students' research skills in data handling, cleaning, analysis, visualisation and presentation by using statistical techniques and a number of computer software packages. Learning outcomes of the course unit (of the **Teaching and learning** Assessment methods methods programme) Practicing to work with different Assignments for the lab sessions (4 Students: data types and software packages - will be able to use and undertake programming in assignments); the number of statistical software packages (R, MS both at university labs and at Final group project and its Excel); (3.4) home. presentation - will undertake basic cleaning of micro, macro and Lab sessions, home-works. financial datasets and preliminary data description of those datasets; (1.2; 3.4) - will undertake statistical analysis, hypothesis Theory lectures, examples, lab testing of datasets, visualisation of data, pattern sessions, home-works. recognition; (1.2; 4.2) - will write reports of their data analysis, distilling Work in group and individually key insights and conclusions and effectively present on real economic and financial their results in a group setup. (4.1; 4.2) data, preparation of reports, their presentations.

	Contact hours						Self-study work: time and assignments		
Content		Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. Introduction and overview to data analysis, its visualization, main tools and software packages (R, Python, MS Excel).	2	2					4	6	Reading lecture notes
2. Particularities of economic and financial data. Cross sections, time series, and panel data, high frequency and big data sets.	2	2			2		6	12	First introduction to different economic and financial data types and sets. Simple operations in the laboratory sessions. Assignment 1: Data downloading, reading, cleaning and preparing for analysis.
3. Exploratory data analysis (EDA) using R and MS Excel: Data summaries; visualisation (basic plots, scatter, bar, line, box, histograms and distributions). Script running, coding.	2	2			2		6	22	Assignment 2: Exploratory work with two different datasets, using both MS Excel and R. Prepare R script to visualise data.
4. Further data analysis: descriptive statistics, correlation, regression, classification, model selection. Script running, coding. Examples in R. Interpretation of results.	6	2			4		12	28	codes and summary of both datasets. Assignment 4: Replication of the published paper that intensively uses data-analytic techniques.
5. Exporting results to the text processing software. Introduction to LaTeX, writing a report. Structuring and interpreting results.	2	2			4		8	26	Preparation of the final data-analytic report. It includes: importing data,
Total:	14	10			12		36	94	1

Assessment strategy We	· /	Assessment criteria
------------------------	-----	---------------------

Final (group) data-analytic project and its presentation	60	The exam session	Quality of data analysis, depth and width of statistical and computational tools that are used to conduct analysis, clarity of results, clarity and efficiency of the code, presentation quality.
Four assignments during the	40	During the	Number of correct answers, creative solutions, meticulous and
semester, each worth 10%		semester	concise presentation of results

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link
Required reading				
Garrett and Grolemu nd Hadley Wickham	2017	R for Data Science	1 st Edition	O'Reilly Media
Christian Kleiber and Achim Zeileis	2008	Applied Econometrics with R	1 st Edition	Springer-Verlag, New York
Roger D. Peng	2015	R Programming for Data Sciences		Learnpub.com